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A1JItract-Free damped vibrations of linear elastic structures composed of uniform beam elements with a
continuous distribution of mass are studied. Axial, torsional and flexural vibrations are considered. The
amount of damping, which can be either internal or external viscous type, varies among the various beam
elements of the structure resulting in many critical damping possibilities. A general method is developed
which, with the aid of dynamic stiffness influence coefficients defined for every element, determines the
"critical damping surfaces" of the system. These surfaces represent the loci of combinations of amounts of
damping leading to critically damped motion and thus separating regions of partial or complete under
damping from those of overdamping. The dimension of a critical damping surface is equal to the number of
independent amounts of damping present in the system, while the number of these surfaces is infinite, i.e.
equal to the number of degrees of freedom of the system. Three examples are presented in detail to
illustrate the proposed method for determining critical damping and demonstrate its importance.

I.INTRODUCTUON
The importance of damping as a means of reducing the response of a vibrating structural
system is well known. Conventionally, the amount of damping in a linear structural system is
expressed as a percentage of the critical damping or modal critical damping values dell'nding
on whether damping is everywhere the same in the structure of varies modally, respectively.
Thus, it is possible to estimate directly the amount of damping in the structure and to
characterize that structure as underdamped, overdamped or critically damped. This knowledge
consequently helps one to control the response by appropriate changes of the damping in the
structure.

However, for linear structural systems with different viscous damping values for some or all
of their members, the problem of determining critical damping becomes much more difficult,
because many critical damping possibilities arise. This problem is of considerable importance
because the availability of different damping values for different members of a structure
provides a more rational way of representing damping properties and permits more effective
response control by taking advantage of the freedom of varying the damping of a large number
of elements.

The problem of critical damping is part of the general problem of structural free damped
vibration, which is concerned with the determination of natural frequencies and modal shapes
of viscously damped linear systems. Necessary and sufficient conditions under which discrete
and continuous damped linear dynamic systems possess classical normal modes have been
established by Caughey and O'Kelly[l]. In a recent paper, Beskos and Boley[2], studied free
viscously damped vibrations of linear discrete systems in which the amount of damping varied
among the various structural members, thus resulting in many "critical damping surfaces."
These surfaces represent the loci of combinations of amounts of damping leading to critically
damped motion and thus separate regions of partial or complete underdamping from those of
overdamping. A general method for the determination of critical damping surfaces of linear
discrete systems was developed in [2]. That method is extended in this paper to certain
continuous linear dynamic structural systems. These include one, two or three dimensional
structures consisting of uniform beam elements with a continuous distribution of mass,
undergoing flexural, torsional or axial free motion, with either internal viscoelastic or external
vis.cous damping. The method developed in [2] is applied to these systems in conjunction with
the use of a new kind of dynamic stiffness influence coefficients defined for the aforementioned
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motions (flexural, torsional and axial) on the basis of the exact solution of the equation of free
damped motion of a beam element. Thus, the dynamic problem is reduced to a static-like one
and the exact solution of the problem is obtained. The use and importance of dynamic stiffness
influence coefficients in treating free and forced vibration problems of beam structures has been
demonstrated elsewhere [3-8].

To the authors knowledge, there is only one work in the literature, namely that of
Kolousek[9], which deals with viscously damped frameworks with a continuous distribution of
mass and different amounts of damping among the various structural members. However, that
work deals only with the underdamped steady-state forced vibration case by employing a kind
of dynamic stiffness influence coefficients in complex number form. Although only a certain
class of continuous structures is considered in the present paper, namely that of beam
structures, the results obtained are representative in that they demonstrate special features
common to all continuous structures characterized by an infinite number of degrees of freedom.
Other continuous structures for which dynamic stiffness influence coefficients can be con
structed can also be studied by the proposed method. If this is not feasible, a finite element
discretization and modeling of the structure as a discrete system with a finite number of degrees
of freedom can be always done and the method of [2] then applied. Three examples dealing with
axial, torsional and flexural vibrations are presented in detail in this paper to illustrate the
proposed method and demonstrate the importance of critical damping surfaces.

2. FREE DAMPED VIBRATIONS OF A BEAM ELEMENT

In this section, dynamic stiffness influence coefficients for free axial, torsional and flexural
vibratory motions of a damped linear elastic uniform beam element are defined and con
structed. Either internal viscoelastic or external viscous damping is assumed. Internal visco
elastic damping is accounted for by assuming, for reasons of simplicity, that the beam material
is a Kelvin solid, Le. with a one-dimensional constitutive equation of the form

(f = H(1 +g d/dt)E, (1)

where (f is the stress, E is the strain, H stands for the modulus of elasticity E or the shear
modulus G, g is the damping coefficient and t represents time. More general viscoelastic models
as described, e.g. in[10] could also have been used without any particular difficulty. Equation
(1) indicates that, under one dimensional states of stress, the formulation of the damped beam
problem can be obtained from that of the corresponding undamped one by simply replacing H
by Jl (l +g d/dt). When external viscous damping is present, it is accounted for in the
displacement equation of the beam motion by a damping force per unit length P proportional to
the velocity and opposing the motion, Le.

p =- I(dv/dt), (2)

where I is the coefficient of damping and v is the beam displacement.
Consider a uniform linear elastic beam element 1-2 of length L (Fig. 1) undergoing axial,

torsional and flexural free damped motions which, on the basis of a streng!h-of-materials
theory, are governed, respectively, by the following uncoupled equations:

EAu"+gEAIi" - mil = 0,

(AC/J)t/>" +g(AC/J)tb" - me;; =0,

Elv"" +gEIi/'" +mii =0,

for internal viscoelastic damping of the Kelvin type, and

EAu"- Iii -mil =0,

(ACIJ)t/>" - Itb - me;; = 0,

Elv"" +Ip +mii = 0,

(3)

(4)
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Fig. I. Positive beam displacements and forces in mechanics convention.
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for external viscous damping, where u = u(x, I), P = p(x, I) and cP = <!,(x, I) are the axial, lateral
and angular displacements of the beam, respectively, E is the modulus of elasticity g and 1are
the coefficients of internal viscoelastic and external viscous damping, respectively, m is the
mass per unit length of the beam, A, I, J and C are the area, moment of inertia, polar moment
of inertia and torsional rigidity of the cross-section of the beam, respectively, primes indicate
differentiation with respect to the distance x along the length of the beam and dots indicate
differentiation with respect to the time I.

By assuming solutions of the form

(5)

where ii, ~ and ii are functions of x only and A is, in general, a complex number, eqns (3) and
(4) are reduced to

where

K J
2= mA 2/EA(l +gAl,

K22= mA2/(ACIJ)(l +gA),

4K4 = mA2/EI(l +gAl,

for internal viscoelastic damping, and

KJ
2= (mA 2+IA)/AE,

Kl = (mA 2+fA )/(ACIJ),

4K4 =(mA2+IA)/EI,

(6)

(7)

(8)

for external viscous damping.
The general case of free damped motion is described by the solution of eqns (6), namely

ii =DJ e K1x +FJ e-K1X,

~ = D2 eK2X +F2 e-K2X ,

ii =eKx(~ cos Kx +F3 sin Kx)+ e-Kx(D4 cos Kx +F4 sin Kx),

(9)

where Dlo Flo D2, F2, D3, F3, D4 and F4 are constants. Consider the beam element 1-2 of Fig. 2
with nodes 1and 2, which has one, one and two degrees of freedom per node for axial, torsional
and flexural motions, respectively. Figure 2 shows the positive directions of the nodal
displacements and the corresponding nodal forces for the three kinds of motion. The dynamic
stiffness influence coefficient Dij is defined as the force at the ith degree of freedom due to a
displacement 1. eAt at the jth degree of freedom, while all the other displacements are zero. On
the basis of this definition and by using the displacement functions (9) as well as the
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Fig. 2. Positive beam nodal displacements and forces.

force-displacement relations

U(x) = AEu'(x),

T(x) = C~'(x),

Vex) = - Elii"'(x),

M(x) = - Elii"(x),

(10)

with positive directions as indicated in Fig. 1, one can construct the Dij coefficients for the
three kinds of motion considered here. Thus, with the sign convention of Fig. 2, the following
element nodal force-displacement relations in terms of the Dij coefficients result:

(11)

for the axial motion,

for the torsional motion, and

(12)

j ~: )= [.g~:
V2 D31

M2 D41

for the flexural motion, where

(13)

(14)

VII =D 22 =AEKIcoth (KIL),

Db = D 21 = - AEKIcosech (KIL),

D'll = Dn= CK2 coth (K2L),

D~2 =D~I =- CK2cosech(K2L), (15)

DII = D33 = 2NK2(y2 +4yse - 1),

DI2 =D21 =- D)4 =- D43 =NK[ y2 - 2y(1- 2s2)+1],

D13 =D31 =(4K2N/'v'(y))[ - y2(S3+ se2+ e)+ y( - S3- se2+ e2)],

DI4 =D41 =- D23 =- D32 =(2NK/V(Y»(S3+ se2+ S)(y2- y),

Dn =D44 =N( y2 - 4yes - 1), (16)

~ =D42 =(2N/V(y))[y2(S3+ se2-e)+ Y(S3+ se2+ e)],

N = 2EIK/[y2 - 2y(1 +2s2)+1],

y =e2KL, s =sin KL, e =cos KL,

and where KJ, K2 and K are given by (7) and (8) for internal and external damping,
respectively.
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3. CRITICAL DAMPING SURFACES

Consider a three-dimensional beam structure consisting of a finite number of uniform beam
elements with a continuous distribution of mass and with different amounts of damping under
free motion. The damping in every beam element may be internal viscoelastic or external
viscous, or a combination of these and may be, in general, different for different kinds of free
motion. The free motion of every element (and so that of the whole structure) is a combination
of axial, torsional and flexural motion. Coupling effects between the various motions are
neglected in this work.

The general equation of free motion for the above described beam structure is of the form
(e.g. [7])

[D]{x} =[D]{"'}eAt ={O}, (17)

where [D) is the structural dynamic stiffness matrix, whose elements are combinations of the
dynamic stiffness influence coefficients Dij for axial, torsional and flexural motion given by
(14HI6), resulting from the superposition of the various element dynamic stiffness matrices
and {x} and {",} are the vectors of the nodal structural displacements and displacement
amplitudes, respectively. The matrix [D) is thus a function of the damping properties of the
various beam elements and the eigenvalues Adefined by eqns (5). Thus, in general,

[D] = [D(h" A)], (r =1,2, ... q), (18)

where h represents amounts of damping and q is an integer, in general, different from the order
p of the matrix [D).

Equation (17) has nontrivial solutions if, and only if,

det [D(h" A)] =ID(h" A)I =O. (19)

The characteristic eqn (19) is a transcendental equation in A which has an infinite number of
roots corresponding to the infinite number of degrees of freedom of the structure under
consideration. These roots can be negative real or complex, resulting in overdamped or
critically damped aperiodically decaying free motion, or in underdamped oscillatory decaying
free motion, respectively. If the system has no damping (h, = 0), eqn (19) is satisfied for an
infinite number of imaginary values of A of the form iwo, where Wo represents natural
frequencies and i = V( -1). If some (all) of the roots of (19) correspond to overdamping,
underdamping or critical damping, the structure is called partially (completely) overdamped,
underdamped or critically damped, respectively. Once the roots A of (19) have been deter
mined, one can solve (17) for the in general complex modal shapes {",}.

For overdamping or critical damping the roots of (19) are of the form

and (19) becomes

A = - b, (b > 0),

ID(h,,-b)l=o.

(20)

(21)

In the q-dimensional space with coordinates h, (r = 1,2, ... q), eqn (21) represents a family of
q-dimensional surfaces corresponding to overdamping or critical damping. The problem con
sists of determining that b which corresponds to the "critical damping surface." There are
actually infinitely many "critical damping surfaces" since there are as many critical damping
possibilities as the number of the roots A. The general method for determining critical damping
surfaces of linear discrete damped systems developed in [2], is extented here to linear con
tinuous systems described by (17). Thus, having in mind that critical damping represents the
threshold between overdamping and underdamping, one can conclude that among the S"
surfaces described by (21), the critical surface Se, is the one for which the damping is a
miQimum, i.e.

(d/db)(ID(h" -b)l) = 0,

dh,/db =0, r =1,2, ... , q. (22)
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In principle, eqn (22) provides the ber as a function of the h,'s and thus the equation of critical
damping surfaces is given by (21) with b = be" i.e. by

ID(h" -ber)1 =O. (23)

In practice, however, one has to solve the system of simultaneous nonlinear equations (21) and
(22) numerically in a manner analogous to that described in [2].

The above method for determining critical damping surfaces is quite general and applicable,
in principle, to the most general space beam structure; however, the practical applicability of the
method is limited to small order structures, because, to the authors knowledge, there is presently no
efficient numerical method available for treatingeqns (22). However, things are greatly simplified in
the particular cases in which only axial or torsional or flexural free motion arise and one kind of
damping (internal or external) is under consideration. Fortunately, these cases deal with very large
classes of structures, such as plane frames or trusses which are usually considered to undergo only
flexural free vibrations and simple and composite beams or shafts undergoing axial or torsional free
vibrations, respectively.

Consider a beam structure undergoing only axial or torsional or flexural free vibrations
under conditions of either internal or external damping. The coefficients K I" K2r and Kr for
axial, torsional and flexural free motion, respectively, of the nh beam element (r =
1, 2, ... , il, il ~ q) are given on account of (7) and (8) by

Kir =[m,/(EA)rUA 2/(1 +g,.,\)],

K~r =[m,/(AC/J)r](A 2 +2tl,.,\},

4Kr4 = [m,/(EI)r][A 2/(1 +g,.,\)],

for internal viscoelastic damping, and

Kir = [m,/(EA)r](A 2+2tl,.,\},

K~r = [m,/(AC/Jr](A 2+2tl,.,\),

4Kr4 = [m,/(EI)r](A 2+ 2tl,.,\},

for external viscous damping with

Ir =2m,tl"

(24)

(25)

(26)

and where the coefficients gr and tlr in (24) and (25) are, in general, different for different kinds
of motion. For the undamped case of the rth beam element for which

An =;wo", (n =1,2, ... ,00), (27)

(28)

where WOll represents the natural frequency in the nth mode of vibration and; =V( -I), eqns
(7) and (8) are replaced by

KirO = - w~lI[m,/(EA)r],

K~rO = - w~lI[m,/(AC/J)r],

4K:" = - (II~II[m,/(EI)r]'

When one particular kind of free motion of the beam structure is considered, the structural
dynamic matrix [D) consists of linear combinations of Vij coefficients with the same type of K
coefficients. In that case (22) becomes

(d/db )(IDI) =L (d/dKr)(IDI) . (dK,/db) =0,
r

(dh,/db) =0, r=I,2, ... ,q, (29)
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which can be recognized as direct extensions of the corresponding equations for discrete
systems [2]. The derivatives dKjdb for the various cases of motion and kinds of damping can
be computed from (24) and (25) for A= - b, and in conjunction with (29h take the following
forms:

dKljdb = [mj2KI,(EA),b(2 - g,b)/(1- g,b)2,

dK2jdb = [mj2K2,(ACIJ),]b(2 - g,b)/(1- g,b )2,

dKjdb = [mjI6K,3(EI),]b(2 - g,b)/(1- g,b)2,.

for internal viscoelastic damping, and

dK.jdb = [mjKI,(EA),](b - (J,),

dK2jdb = [mjK2,(AC/J),](b - (J,),

dKjdb = [mj8K,3(EI),](b - (J,),

(30)

(31)

for external viscous damping.
The particular point hI = h2 = ... = hq = h of a critical damping surface for which conditions

(29) hold true can be easily determined. Thus, on account of (30) and (31) with {J, = {J 'and
g, = g, one can easily see that (29)1 is satisfied for

for internal viscoelastic damping and

2- gb =0,

b - {J = 0,

(32)

(33)

for external viscous damping. Substitution of (32) and (33) into (24) and (25) in conjunction with
A= - b, g, = g, and {J, = {J and comparison of the results with (28) leads to, a critical value ber of
b given by

bnc, = Won, n = 1,2, ... ,00,

for all kinds of motions and damping cases. Thus, (23) takes the form

(34)

(35)

and serves to determine the value of h = hn for every n numerically. Notice that in this case the
structure possesses classical normal modes. Equation (35) also indicates that a beam structure
with a continuous distribution of mass, one kind of damping and under one kind of free motion
has an infinite number of critical damping surfaces and consequently complete critical damping
or overdamping are achieved for n ~oo.

The above results could have been obtained in a different way as follows: When hI =h2 =
... =hq =h, combination of (24), (25) and (28) leads to the conclusion that the value of An in
any mode n will be such that

(36)

for internal viscoelastic damping and

(37)

for external viscous damping. Under conditions of underdamping

(38)
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where Wn represents the damped natural frequency in the nth mode and by combining (38) with
(36) and (37) one obtains the relations

(39)

for internal viscoelastic damping, and

(40)

for external viscous damping. Considering critical damping as the threshold between under
damping and overdamping, one can imagine the state of critical damping as the limit of the
underdamping state as the amount of damping increases so that Wn approaches zero. Thus, the
conditions of critical damping, in view of (39) and (40), are

g =2/bnc,., bncr =Won

for internal viscoelastic damping, and

for external viscous damping. These equations are identical with (32H34).
Three illustrative examples are given below.

4. EXAMPLES

(41)

(42)

Example 1
Consider a uniform cantilever beam of length L, mass per unit length m and axial rigidity

AE. In this case, damping is uniform; the example is included simply to illustrate the proposed
method in a classical case. The equation of free axial vibration of this beam, obtained from (II)
for U. = U2 = 0 and iiI = 0 reads

Thus, eqn (21), on account of (14), (24)1> (25)1 and (43), becomes

coth (K.L) = 0

where

K~ = (m/AE)(b2/(I +gb)]

for internal viscoelastic damping, and

K~ = (m/AE)(b2 - 2{3b)

(43)

(44)

(45)

(46)

for external viscous damping. The equation of critical damping surfaces is again given by (44)
but with (45) and (46) being replaced by

K~ = (m/AE)(w~n - 2{3won ),

(47)

(48)

for internal and external damping, respectively, in view of the condition (34) for critical
damping. The natural frequencies Won can be obtained from (44) with K. given by (28). and are
of the form

Won =O/2L)(2n -l)1TV(AE/m), n = 1,2, .. ,00, (49)
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Fig. 3. Composite shaft in torsional free motion for Example 2.
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Thus, for both kinds of damping, the critical damping surfaces are actually an infinite set of
points which, on account of (32H34), are given by

(50)

for internal viscoelastic damping, and

(51)

for external viscous damping.

Example 2
Consider the composite shaft 1-2-3 of Fig. 3 which consists of two uniform beams of

circular cross sections with length L and shear modulus O. The polar moment of inertia, the
cross-sectional area, the mass per unit of length and the external viscous damping coefficient
are symbolized by Jr, Alt mr, 13r and Jrlt An, mn, 13n for the beams (1-2) =I and (2-3) =II,
respectively. The equation of free torsional motion of this shaft is obtained with the help of (12)
by superimposing the dynamic stitfnesses of the two beam elements I and II and applying the
boundary conditions ~1 =~3 =O. Thus, eqn (21) becomes

where, from (15) for a circular cross section (C = OJ),

(D~2>r = OJrK21 coth (K21L),

(D~I)n = OJnK21r coth (K21rL),

(52)

(53)

with K21 and K21r given by (27h with A= - band C = OJ. Equation (29), with the aid of (52),
(53) and (31h with C =OJ, yields

(d(D~2)rldK21 )(dK2r1db) +(d(D~I>rrldK21r )(dK211/db) = 0,

where

d(D~2)rldK21 = OJr[coth (K21L) - K21L cosch2 (K21L)],

d(D~I>rrlDK21r = OJn[coth (K211L) - K2nL cosch2 (K2nL)] ,

dK2Jdb = (m;/K2;A;0)(b - 13;), i = I, II.

The natural frequencies of the system can be obtained from (52) with

where

(54)

(55)

(56)

(57)
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represents the mass density of the shaft material. Use of (56) and (57) reduces (52) to

(II +Ill) cot ('KL) = 0

with solution

Won =(1/2L)(2n -lhrV(G/p), n =1,2, ... ,00.

(58)

(59)

The critical damping surfaces are described by (52) with ber obtained as a function of ~I and
~II from (54) and (55) and form an infinite set of curves in the ~I - ~ll plane. For the particular
case of ~II =0, !JIll =2, G/p =1 and L =1, a computer solution of the simultaneous equations
(52), (54) and (55) provides the following values for the first three roots ~I:

~I = 2.03, 5.16, 8.31.

These values correspond to the first three natural frequencies

Wol = 'TT/2 =1.571, Wo2 =3'TT/2 =4.712, Wo3 =5'TT/2 =7.854,

(60)

(61)

and indicate that the critical damping surfaces are just an infinite set of points along the ~I axis.

Example 3
Consider the uniform continuous beam 1-2-3 of Fig. 4 with bending rigidity EI and mass

per unit of length m. The structure consists of two beam elements of the same length L but with
different external viscous damping coefficients ~I and ~II as shown in Fig. 4. The equation of
free flexural motion of this contmuous beam is obtained with the aid of (13) by superimposing
the dynamic stiffnesses of tile two elements (1-2) = I and (2-3) = II and applying the boundary
conditions VI =81 =V2 =V3 =83 =O. Thus, eqn (21) becomes

(62)

where (D44)I = (D22h and (~2)1l are furnished by (16) with KI and, KII given by (25h with
A=-b.

Equation (29), with the aid of (62), (31)3 and (16), yields

(d(D22)JdKI)(dKJdb) +(d(~)IJdKII )(dKIJdb) = 0

dKJdb = (m/8K? EI)(b - ~j),

d(~)JdKj = ([2( 'Y2
- 4'Ycs - 1) +8Kj('Y2

- 2'YCS - 'YC2 +'Ys2)J

. ['Y2_2'Y(1 +2s2)+ 1]-8Kj('Y2-4'Ycs -1)('Y2- 'Y-2'YS2_2'Ycs)}

/[ 'Y2- 2'Y(1 +2s2
) +1]2, (63)

Kj= (m/V(2)EI)(b2- 2b~j)1/4, j = I, II.

The natural frequencies of the system can be obtained from (62) with

4K1 =4K11 =- (m/EI~~n,

I, PI EI,m POI I:;;J;
2 3

1'4 L .. I- L "I

Fig. 4. Continuous beam in ftexural free motion for Example 3.

(64)
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2D22 =0,
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(65)

where'the dynamic stiffness coefficientwithout damping Dz.2 is taken from Ref. [4 or 7] and is of the
form

D22 =ElK (sin KL cosh KL - cos KL sinh KL)/(1- cos KL cosh KL) (66)

with

Use of (66) reduces (65) to

tan KL - tanh KL =0,

(67)

(68)

which has an infinite number of roots, the first three of which are given to third decimal
accuracy by

KL =3.921, 7.069, 10.210. (69)

Thus, by combining (67) and (69), the following expressions for the first three natural
frequencies are obtained:

WOII = (1L1I2/L2)V(EI/m), n = 1,2,3,

1L12 ::= 15.421, ILl::= 49.971, ILl::= 104.244. (10)

The critical damping surfaces are described by (62) with ber obtained as a function of fJr and
Pll from (63) and form an infinite set of nonlinear curves in the PI - PII plane. All these curves
are symmetric about the line PI::= PII' as it can be very easily seen from (16) and (25)3 with
A=- b that an interchange of PI and PH leaves (62) unaffected; this was expected in view of
the symmetry of the structure. For the particular points of the curves for which PI ::= PH ::= P,
(42) yields

(71)

Figure 5 shows the first three critical damping curves corresponding to the first three frequen
cies of (70). These curves were constructed by numerically solving the system of simultaneous
equations (62) and (63) for EI =L =m = 1; the computations were done by computer using
complex arithmetic due to the fact that KI and KII in (63).. are, in general, complex numbers. It
was observed during the computation that the values of ber for every curve were very close to
the value of ber corresponding to the point PI =PII' i.e., to the value Pller = wdll' This suggested
an approximate construction of the curves on the basis of (62) with

(72)

j=I, II, n = 1,2, ... ,00.

These approximate curves drawn in Fig. 5 for EI::= L ::= m ::= 1 practically coincide with the
"exact" curves. Even though this suggests a simple way to construct very good approximate
curves, no generalizations beyond the above observations are presently available. The critical
damping curves Ch C2, ••• , C", of the structure of Fig. 4 with the exception of the C", are all
partially critical and separate the PI - PH plane in an infinite number of regions Rh R2••• , R", of
which only the first four are shown in Fig. 5. Region R1 represents complete underdamping,
while complete overdamping is achieved only at infinity as all the other regions represent partial
overdamping.
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Fig. 5. The first three critical damping curves of the continuous beam of Example 3.

The damping curves of Fig. 5 are the "exact" damping curves of the continuous beam as
computed with the aid of the dynamic silifness influence coefficients constructed on the basis of
the exact equations of motion. It is interesting to study the degree of approximation obtained by
constructing approximate critical <;Iamping curves of the continuous beam, on the assumption
that the structure is discretized by lumping the mass as shown in the alternative models of Fig.
6. The equation of free flexural motion of the two degrees of freedom model of Fig. 6(a), on the
assumption that its viscous damping matrix is diagonal and by eliminating rotational degrees of
freedom, takes the form

[M
1 °I] {~l} + [Cl 0] {~l} +12~i [11 3] {Xl} = {OJ° M X2 ° C2 X2 7(l) 3 11 X2 ° (73)

where Xh c. and X2, C2 represent vertical deflections and damping coefficients for the points 1
and 2, respectively. The static stiffness coefficients for a beam element were taken from [11].
The natural frequencies Wo of the two degrees of freedom system are the roots of the equation

(74)

(a) I ~. :£--4••:-'--I
~ " --..- " ·1" ,'--...-- " .......

/=L/2
M'=ml'

(b) 1 M" M" M" M" I
~-"'."'-••2l-sc-t....-t....- /'=LI'3

I ~ '3 4 M"=m/'

~l'...... l'~l'.......... /'~/' ...... /~
a

Fig. 6. Lumped-mass discretizations of the continuous beam of Example 3.
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Critical damping in certain linear continuous dynamic systems 587

(75)

From the approximate method of [2], the equations of the critical damping curves of the system
are

(76)

where

For the case of EI = L = m = 1,

and the solution of (74) is

M' =0.5, ~ =13.714,

Cdol =14.813, Cdo2 =19.596

(77)

(78)

forming a lower bound to the exact solution (70). A similar computation for the four degrees of
freedom model of Fig. 6(b) provides the following values for the natural frequencies:

Cdol = 15.357, Cdo2 = 22.055, Cdo3 = 45.656, Cdo4 = 51.254. (79)

It is obvious from (72), (78) and (79) that both of the discrete systems provide an acceptable
approximation for the first natural frequency only. Consequently, both of the discrete systems
can provide a good approximation of only the first critical damping curve. Figure 7 shows the
first critical damping curve for the continuous beam as obtained by the continuous as well as
the two discrete models. The main conclusion of this comparison study is that for discrete
lumped-mass models only the first few critical damping surfaces are close to the exact ones.
Accuracy of representation of the higher damping surfaces increases by increasing the order of
the discrete model.

5. CONCLUSIONS

On the basis of the preceding discussion, the following conclusions can be drawn with
regard to the free motion of linear structures composed of beams with a continuous distribution
of mass and different amounts of internal and/or external viscous damping:

(1) There exist infinitely many "critical damping surfaces" for every structure which represent

--- Continuous
25

15

Ill!

5

/
/

/
/

/
./

19.00

15 ~:
(,11-

25

----- 4 d.o.f.

_._.- 2 d.o.f.

Fig. 7. Approximations of the first critical damping curve of the structure of Example 3.
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the loci of combinations of damping leading to partial or complete critical damped motion and
thus separating regions of partial or complete underdamping from those of overdamping. The
dimension of these surfaces is equal to the number of independent amounts of damping present in
the system.

(2) A general method is proposed for determining the equations of these critical damping
surfaces in conjunction with dynamic stiffness influence coefficients which are functions of the
damping and inertia properties of the structure. This method is greatly simplified for systems
which undergo only one kind of motion, namely axial or torsional or flexural. For these systems
there are infinitely many partially critical damping surfaces creating one region of complete
underdamping and infinitely many regions of partial overdamping as complete critical damping
or overdamping are achieved only for infinite damping values.

(3) The critical damping surfaces obtained by the proposed method represent the exact
solution of the problem since they are constructed with the aid of dynamic stiffness influence
coefficients based on the exact solution of the equation of motion. For complicated beam
structures or other structures with continuous distribution of stiffness, mass and damping
properties, such as discs, plates and shells, a discretization of the structure and application of
the methods of Ref. [2] is probably the most practical approach. The resulting damping
surfaces will of course be approximate, with a degree of accuracy decreasing as surfaces
corresponding to higher frequencies are considered.
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